Pharmacokinetic Properties of Testosterone Propionate in Normal Men

MINORU FUJIOKA, YOSHIHIKO SHINOHARA, SHIGEO BABA, MINORU IRIE, AND KAZUKO INOUE

Department of Physical and Pharmaceutical Chemistry, Tokyo College of Pharmacy, 1432-1 Horinouchi, Hachioji, Tokyo 192-03; and First Department of Internal Medicine, Toho University School of Medicine, 5-21-16 Omori Nishi, Ota-ku, Tokyo 143, Japan

ABSTRACT. The pharmacokinetic characteristics of testosterone propionate were studied in normal men after a single im dose of 25 mg testosterone propionate-19,19,19-d3. Plasma levels of testosterone propionate-19,19,19-d3, its active metabolite testosterone-19,19,19-d3, and endogenous testosterone were measured by gas chromatography-mass spectrometry. Testosterone propionate-19,19,19-d3 was gradually transferred from the injection site to the systemic circulation. The plasma levels of testosterone propionate-19,19,19-d3 were maintained at 2-4 ng/ml between 3 and 36 h after administration. Plasma testosterone-19,19,19-d3 levels were maintained above the physiological testosterone level for 48 h, while plasma levels of endogenous testosterone changed little.

TESTOSTERONE propionate is a short-acting par enteral form of testosterone used primarily in the treatment of hypogonadism, oligospermia, and impotence (1). Although the clinical use of testosterone propionate has been investigated, pharmacokinetic studies have been limited by the lack of a specific and sensitive assay. Testosterone propionate in pharmaceutical preparations has been measured by gas chromatography (GC) (2, 3), high performance liquid chromatography (4), high performance thin layer chromatography (5), infrared spectrophotometry (6), and colorimetry (7). However, none of these methods allowed measurement of testosterone propionate in biological fluids, because of low sensitivity and low selectivity. In attempts to examine the disposition of testosterone propionate, RIA (8–10) and competitive protein binding assay (11, 12) have been used to detect changes in unesterified testosterone concentrations in plasma after im administration of testosterone propionate. However, no direct evidence is available regarding the pharmacokinetics of im administered testosterone propionate. RIA and competitive protein binding assay cannot address this problem, since this type of assay cannot differentiate between endogenous testosterone and testosterone derived from administered testosterone propionate.

We have initiated studies designed to characterize the pharmacokinetic properties of im administered testosteron propionate and to determine the effect of testosterone propionate on endogenous testosterone levels. We reported previously the determination of plasma testosterone propionate levels by GC-mass spectrometry-selected ion monitoring (GC-MS-SIM) (13). The present paper describes the applications of GC-MS techniques for the pharmacokinetic study of deuterated testosterone propionate after the im administration of testosterone propionate-19,19,19-d3 to normal men.

Materials and Methods

Chemicals

Testosterone propionate-19,19,19-d3 (testosterone propionate-19-d3) and testosterone-19,19,19-d3 (testosterone-19-d3) were synthesized in our laboratory, as described previously (13, 14). Their isotopic compositions were 99.0% deuterium atoms (d0, 97.8%; d3, 2.2%; d5, 0.0%). Unlabeled testosterone propionate (Tokyo Chemical Industry, Tokyo, Japan) and trifluoroacetic anhydride (Nakarai Chemicals Ltd., Kyoto, Japan) were obtained commercially. The testosterone propionate-19-d3 preparation for im injection was prepared by dissolving 25 mg testosterone propionate-19-d3 in 1 ml sesame oil containing 20% benzyl benzoate, followed by membrane filtration to insure sterility.

GC-MS-SIM

GC-MS-SIM measurements were made in the El-mode with a Shimadzu LKB-9000B gas chromatograph-mass spectrometer equipped with Shimadzu high speed multiple ion detector-peak matcher 9060S. The GC column was a glass column (id,
2 m x 3 mm) packed with 1.5% OV-1 on Shimalite W (80–100 mesh). The injector, column, and ion source temperatures were 260, 230, and 270 °C, respectively. Helium was used as the carrier gas at a flow rate of 30 ml/min. The electron energy was set at 20 eV, and the trap current at 60 μA. The multiple ion detector was focused at the molecular ions of the trifluoroacetate derivatives of testosterone propionate (19-d3, m/z 440; 19-d6, m/z 443) and testosterone (19-d3, m/z 480; 19-d6, m/z 483) to obtain peak height ratios.

Testosterone propionate-19-d3 administration studies

The study subjects were two normal men, 27 and 24 yr old, weighing 72 and 61 kg, respectively. To determine the secretory dynamics of endogenous testosterone, heparinized blood samples (10 ml) were obtained at 0800, 1100, 1400, 1700, and 2000 h for 4 days. The men then were given 25 mg testosterone propionate-19-d3, im, at 0800 h. Ten-milliliter heparinized blood samples were obtained 5 min before and 3, 6, 9, 12, 24, 27, 30, 33, 36, 48, 54, 60, 72, 78, and 84 h after dosing. Plasma was separated by centrifugation and stored at -20 °C until analysis.

Sample preparation for GC-MS-SIM

To measure the secretory dynamics of endogenous testosterone, heparinized blood samples (10 ml) were obtained at 0800, 1100, 1400, 1700, and 2000 h for 4 days. The men then were given 25 mg testosterone propionate-19-d3, im, at 0800 h. Ten-milliliter heparinized blood samples were obtained 5 min before and 3, 6, 9, 12, 24, 27, 30, 33, 36, 48, 54, 60, 72, 78, and 84 h after dosing. Plasma was separated by centrifugation and stored at -20 °C until analysis.

To measure testosterone propionate-19-d3 in plasma, plasma samples were subjected to the GC-MS-SIM analytic method described previously (13). Briefly, 20 ng unlabeled testosterone propionate were added as an internal standard to 1.0 ml plasma. To avoid hydrolysis of testosterone propionate during the extraction procedure and the presence of numerous interfering peaks at m/z 440 and 443, the plasma sample was cooled to 4 °C and extracted with n-hexane. The n-hexane extract was cooled to -15 °C and centrifuged to remove plasma lipids. After derivatization with trifluoroacetic anhydride, 1–3 μl sample dissolved in 20 μl n-hexane were analyzed by GC-MS-SIM. This assay has a sensitivity of 0.2 ng/ml plasma and an interassay coefficient of variation of 3.5% (2.6 ng/ml plasma) based on measurement of three samples in triplicate.

Results

Endogenous plasma testosterone profiles

Before studying the disposition of testosterone propionate, we determined the levels of endogenous plasma testosterone for 4 days in the two normal men (Fig. 1). The mean plasma testosterone concentration in subject 1 was 6.6 ng/ml, with a range of 4.0–8.9 ng/ml. Subject 2 had a mean value of 6.9 ng/ml and a range of 4.7–9.3 ng/ml. Testosterone concentrations had a circadian rhythm, with the highest levels between 0800 and 1100 h.
h and the lowest levels between 1700 and 2000 h in both men.

Plasma testosterone propionate-19-d₃ and testosterone-19-d₃ concentrations

Plasma testosterone propionate-19-d₃ levels were maintained at 2-4 ng/ml between 3 and 36 h after im administration of a single 25-mg dose of testosterone propionate-19-d₃ (Fig. 2) and thereafter decreased very slowly. Testosterone-19-d₃ was detected in the first blood sample taken 3 h after the injection. The maximum plasma testosterone-19-d₃ levels (15.0 ng/ml for subject 1 and 11.5 ng/ml for subject 2) occurred between 24 and 27 h. Thereafter, the decline of testosterone-19-d₃ was parallel to that of testosterone propionate-19-d₃ in both subjects. The pharmacokinetic parameters characterizing the disposition of testosterone propionate-19-d₃ and testosterone-19-d₃ are summarized in Table 1.

Effect of testosterone propionate-19-d₃ on plasma endogenous testosterone

Endogenous plasma testosterone levels were measured at various times for 84 h after the im testosterone propionate-19-d₃ injection. The results are shown in Fig. 2. Endogenous testosterone levels just before the administration of testosterone propionate-19-d₃ were 7.2 ng/ml in subject 1 and 7.5 ng/ml in subject 2. After the administration of testosterone propionate-19-d₃, endogenous testosterone levels varied between 3.8 and 7.8 ng/ml and 4.4 and 7.5 ng/ml in subjects 1 and 2, respectively.

Discussion

The use of GC-MS and stable isotopically labeled drugs as tracers makes it possible to provide a precise analytical method for both the parent compound and metabolites with high sensitivity and selectivity (20-22). The application of this method allowed us to follow the plasma levels of testosterone propionate-19-d₃ and its active metabolite testosterone-19-d₃ for 84 h after the im administration of testosterone propionate-19-d₃.

Intramuscularly administered testosterone propionate-19-d₃ was readily detected in the circulation, demonstrating clearly that the testosterone propionate-19-d₃ was transferred from the injection site in the muscle to the systemic circulation.

Nieschlag et al. (8) measured the total plasma exogenous and endogenous testosterone levels by RIA after the im administration of 25 mg testosterone propionate to normal men. Total plasma testosterone levels were maintained above the physiological levels for 24 h after drug administration. However, it was not possible to determine exactly the contribution of administered testosterone propionate to the total concentration of circulating testosterone. With the aid of the double isotope dilution assay employed in this study, endogenous testosterone and testosterone derived from administered testosterone propionate could be differentiated easily. Conversion of testosterone propionate-19-d₃ to testosterone-19-d₃ was fast in the systemic circulation, and testosterone propionate-19-d₃ injection resulted in exogenous testosterone levels above the normal testosterone level (>4 ng/ml) for 48 h. Moreover, exogenous testosterone continued to contribute to the total plasma levels for up to 84 h.

Significant decreases in plasma LH occur after the im administration of testosterone preparations to normal men (8, 12, 23-25). This decrease is caused by the negative feedback effect of exogenous testosterone on LH.

Table 1. Parameters characterizing the disposition of testosterone propionate

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Subject 1</th>
<th>Subject 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>tₐ (h)</td>
<td>26.7</td>
<td>23.1</td>
</tr>
<tr>
<td>CLₜ (ml/min)</td>
<td>2317.4</td>
<td>1958.0</td>
</tr>
<tr>
<td>Vₜ (leters/kg)</td>
<td>74.9</td>
<td>122.5</td>
</tr>
<tr>
<td>MRTₜₚ (h)</td>
<td>38.8</td>
<td>63.6</td>
</tr>
<tr>
<td>MRTₜ (h)</td>
<td>30.5</td>
<td>54.4</td>
</tr>
<tr>
<td>AUCTₚ (ng-h/ml)</td>
<td>179.8</td>
<td>212.8</td>
</tr>
<tr>
<td>AUCT (ng-h/ml)</td>
<td>553.0</td>
<td>571.0</td>
</tr>
</tbody>
</table>

MRTₜₚ, The mean residence time of testosterone propionate; MRTₜ, the mean residence time of testosterone; AUCTₚ, the area under the plasma concentration time curve of testosterone propionate; AUCT, the area under the plasma concentration time curve of testosterone.
secretion, which, in turn, should result in suppression of testicular secretion of testosterone. However, no direct evidence concerning the effect of exogenous testosterone on endogenous testosterone levels is yet available. In our study, administration of testosterone propionate-19-d₃ was followed by a gradual decline in plasma endogenous testosterone levels, which then returned to pretreatment levels 24 h after the administration of testosterone propionate-19-d₃. However, the circadian testosterone rhythm, as documented in these men before testosterone propionate administration, could have resulted in the curves obtained after testosterone propionate administration. Thus, we cannot conclude that endogenous testosterone production was suppressed by the single dose of testosterone propionate administered.

References